Bài 2: Đường kính và dây của đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Nam

Trong đường tròn (O;R) có 2 bán kính OA, OB sao cho AOB=120, gọi OI là đường cao của tam giác AOB. Tia OI cắt đường tròn (O) tại C.
a) Tính các góc, cạnh AB, chiều cao OI của tam giác AOB theo R.
b) Chứng minh tứ giác OACB là hình thoi. Tính diện tích của OACB theo R.

DƯƠNG PHAN KHÁNH DƯƠNG
12 tháng 8 2019 lúc 15:06

Câu a : Do tam giác OAB cân tại O và \(\widehat{AOB}=120^0\Rightarrow\widehat{OAB}=\widehat{OBA}=30^0\)

Mặt khác : OI vừa là đường cao , đường trung tuyến , đường phân giác nên \(AB=2AI\) .

\(AI=\sin\widehat{AOI}.OA=\sin60.R=\frac{R\sqrt{3}}{2}\Rightarrow AB=R\sqrt{3}\)

\(OI=\cos\widehat{AOB}.OA=\cos60.R=\frac{R}{2}\)

Câu b : Ta có \(\Delta OAC\) cân tại O mà \(\widehat{AOC}=60^0\) nên \(\Delta OAC\) là tam giác đều \(\Rightarrow OA=AC=OC\left(1\right)\)

Tương tự \(\Delta OBC\) nên ta có : \(OB=BC=OC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow OA=OB=BC=AC\) nên \(OACB\) là hình thoi .

\(\Rightarrow S_{OACB}=\frac{1}{2}.AB.OC=AB.OI=R\sqrt{3}.\frac{R}{2}=\frac{R^2\sqrt{3}}{2}\)


Các câu hỏi tương tự
misen
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Linh Bùi
Xem chi tiết
Khang Huỳnh
Xem chi tiết
illumina
Xem chi tiết
Phạmm Dungg
Xem chi tiết
jztr
Xem chi tiết
Linh Bùi
Xem chi tiết
Nguyễn Lame
Xem chi tiết