Bài 2: Cho ΔABC có AB = 6cm, AC = 4,5 cm, BC = 7,5 cm
a) CM: Tam ABC vuôg
b) Tính góc B, C, đường cao AH
Bài 3: Cho đường tròn (O), A là tiếp điểm nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm )
a) CM: OA ⊥ AO
b) VẼ đường kính CD, CM: BD // AO
c) Tính chu vi của TAm giác ABC biết OB= 2cm, OA = 4cm
(mink đag cần gấp)
b) Đường thẳng OP là tiếp tuyến của đường tròn ngoại tiếp tam giác MNP. Cho nửa đường tròn (O) đường kính AB và một điểm P trên nửa đường tròn. Gọi Q là một điểm trên đường kính AB. Qua Q kẻ đường vuông góc với AB cắt BP tại M, cắt AP tại N. Tiếp tuyến của nửa đường tròn ở P cắt MN ở I. Chứng minh: a) Tứ giác QNPB và AQPM là các tứ giác nội tiếp
Cho nửa đường tròn (O) đường kính AB. Điểm C di chuyển trên một nửa đường tròn. Qua B và C kẻ các tiếp tuyến với nửa đường tròn, các tiếp tuyến đó cắt nhau tại D. Qua O kẻ đường thẳng song song với BC, đường thẳng này cắt tiếp tuyến tại B và C lần lượt ở E và G.
a, Chứng minh BC vuông góc với OD
b, Chứng minh OG=OE
c, Chứng minh AG là tiếp tuyến của nửa đường tròn (O). Tìm vị trí của điểm C trên nửa đường tròn để diện tích tam giác GED đạt giá trị nhỏ nhất?
GIÚP MIK VS Ạ!
MIK CẢM ƠN TRC Ạ!!!
Cho tam giác ABC có AB = AC nội tiếp đường tròn tâm O, đường cao AH
của tam giác cắt đường tròn (O) tại D
a) Chứng minh rằng AD là đường kính của đường tròn tâm O
b) Tính góc ACD
c) Cho BC = 12cm, AC = 10cm. Tính AH và bán kính của đường tròn tâm O
Cho đường tròn (O), điểm A nằm bên trong đường tròn, điểm B nằm bên ngoài đường tròn sao cho trung điểm I của AB nằm bên trong đường tròn. Vẽ dây CD vuông góc với OI tại I. Hãy cho biết ACBD là hình gì ? Vì sao ?
Cho đường tròn tâm O, đường kính AB. Lấy hai điểm C và D theo thứ tụ trên cung AB. Hai đường thẳng AC và BD cắt nhau tại M. Chứng minh đường kính đường tròn ngoại tiếp tam giác MCD vuông góc với AB
từ điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là hai tiếp điểm). a) Chứng minh 4 điểm O, A, B, C, cùng thuộc một đường tròn và BC vuông góc OA tại H b) Kẻ đường kính CD của đường tròn (O). Chứng minh BD // OA c) Gọi E là trung điểm của BD, EH cắt OB tại M, đường thẳng qua E song song với AB cắt AB tại N. Các đường thẳng vuông góc với EM tại M và vuông góc với EN tại N cắt nhau tại I. Chứng minh: IO = IA
Từ A ngoài (O) vẽ tiếp tuyến AB, AC đến (O). Kẻ đường kính DB, vẽ CE DB, AD cắt CE tại I. a. Chứng minh AC.CD = CE.AO. b. Chứng minh I là trung điểm CE. c. Biết OA = 2R. Chứng minh ABC đều và tính BCE S theo R d. Trên tia đối của BC lấy S. Từ S vẽ 2 tiếp tuyến SM, SN đến (O). Chứng minh: 3 điểm A, M, N thẳng hàng.