Trên đoạn thẳng AB lấy điểm C( CA>CB). Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều ACD và BCE. Gọi M,N,P,Q lần lượt là trung điểm của AE, CD,BD,CE
a) Tứ giác MNPQlaf hình gì?
b) CMR: MP = 1/2DE
Trên đoạn thẳng AB lấy điểm C (CA>CB).Trên cùng nửa mặt phẳng bờ AB vễ các tam giác đều AMC và BCD . Gọi E,F,I,K theo thứ tự lần lượt là trung điểm của các đoạn thẳng MC,MB,CD,AD
a) Tứ giác EFIK là hình gì,VÌ sao?
b) C/m MD=2KF
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho tam giác ABC vuông tại C (CA < CB). Lấy điểm I bất kì trên cạch AB. Trên nửa mặt phẳng bờ AB chứa C, kẻ tia Ax, By cùng vuông góc với AB. Đường vuông góc với IC cắt Ax, By lần lượt tại M và N.
a, Chứng minh \(\Delta\)CAL đồng dạng \(\Delta\)CBN
b, AB.NC=IN.CB
c, \(\widehat{MIN}\) là góc vuông
d, Tìm vị trí điểm I để diện tích \(\Delta\)IMN gấp 2 lần diện tích \(\Delta\)ABC
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
Trên đoạn thẳng AB lấy điểm C ( AC>CB) trên cùng một nửa mặt phẳng có bờ là AB vẽ tấn giác đều AMC , BCD. Gọi E , F,I, K lần lượt theo thứ tự là các trung điểm của các đoạn thẳng MC, MB, CD, AD
a) tứ giác EFIK là hình tháng cần
b) chứng minh KE = 1/2 MD
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?