Cho hình vuông ABCD. Trên cạnh BC lấy điểm I, tia AI cắt đườngthẳng CD tại E, tia DI cắt đường thẳng AB tại F. Chứng minh:
a) BF.CE = AD^2 b) ∆FBC∼∆BCE c) BE vuông góc CF
Cho hình chữ nhật ABCD . Trên tia đối của tia AD lấy điểm F sao cho AF=AB . Trên tia đối của tia AB lấy điểm E sao cho AE=AD. Gọi N là giao điểm của FC với AB và M là giao điểm của CE và AD . Chứng minh MD= BN
Cho ∆MBC vuông tại M (MB < MC), có đường cao MD.
a) Chứng minh: ∆BDM ∽ ∆BMC
b) Chứng minh: CM2 = CD.CB
c) Cho MB = 6cm, MC = 8cm. Tính BC và MD
d) Trên tia đối của tia DM lấy điểm A (DA > DM). Vẽ đường cao CF của ∆ABC, CF cắt AD tại H.
Chứng minh: ∆HDC ∽ ∆HFA.
e) Chứng minh: CH.CF = CD.CB
f) Chứng minh: góc CMH=góc CFM
Chứng minh: DM2 = DH.DA
cho hình vuông ABCD , lấy điểm M trên cạnh BC, điểm N trên cạnh DC biết góc MAN = 45 độ . AM, AN cắt BD tại Q và P.
a) Chứng minh tam giác ABQ đồng dạng với tam giác PQM.
b) Kẻ AH vuông góc với MN . Chứng minh rằng AH có giá trị không đổi .
Bài 1: Cho hình thang ABCD có AB//CD, E và F là 2 điểm thuộc 2 cạnh bên sao cho AE/DE=BF/CF. Chứng minh rằng EF//AB//CD.
Giúp mình với. Tks
Cho hình chữ nhật ABCD . Trên tia đối của tia AD lấy điểm F sao cho AF=AB .Trên tia đối của tia AB lấy điểm E sao cho AE=AD. Gọi N là giao điểm của FC và AB và M là giao điểm của EC và AD.Chứng minh: MD=BN
cho hình chữ nhật ABCD. AB=30cm, AD=40cm. Trên AD lấy điểm F sao cho BF=BC, đường trung trực của CF cates DC tại E. EF cắt AB tại P a) Chứng minh tam giác PAF đồng dạng tam giác FAB b) Tính độ dài PB c) Chứng minh góc CPB = góc DBC d) Chứng minh PC_|_BD
Cho tam giác ABC, 1 đường thẳng song song với cạnh BC và cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD .Gọi M là giao điểm của DF và BC.
a. Chứng minh: \(\frac{MD}{MF}=\frac{AC}{AB}\)
b. Cho BC=8cm, BD=5cm và DE = 3cm. Chứng minh rằng ΔABC cân