a) \(C=\dfrac{2}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}=\dfrac{2\left(\sqrt{5}-1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}=\dfrac{2\left(\sqrt{5}-1\right)}{5-1}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{9-5}}=\dfrac{\sqrt{5}-1}{2}+\sqrt{\dfrac{6+2\sqrt{5}}{4}}=\dfrac{\sqrt{5}-1}{2}+\dfrac{\sqrt{5+2\sqrt{5}+1}}{2}=\dfrac{\sqrt{5}-1+\sqrt{\left(\sqrt{5}+1\right)^2}}{2}=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{2}=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\)
b) \(D=\dfrac{1}{x-\sqrt{x}}-\dfrac{2\sqrt{x}}{x-1}+\dfrac{1}{x+\sqrt{x}}=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+1-2x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-2x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{-2}{\sqrt{x}+1}\)