\(M=1+\left(-2\right)+\left(-2\right)^2+...+\left(-2\right)^{2006}\)
=> \(-2M=-2+\left(-2\right)^2+\left(-2\right)^3+...+\left(-2\right)^{2007}\)
=> \(-2M-M=-2+\left(-2\right)^2+...+\left(-2\right)^{2007}\)
- \(1+\left(-2\right)+\left(-2\right)^2+...+\left(-2\right)^{2006}\)
=>\(-3M=\left(-2\right)^{2007}-1\)
=> M = \(\dfrac{\left(-2\right)^{2007}-1}{-3}=\dfrac{-2^{2007}-1}{-3}=\dfrac{2^{2007}-1}{3}\)