\(\dfrac{y+z}{\left(x-y\right)\left(x-z\right)}+\dfrac{x+z}{\left(y-z\right)\left(y-x\right)}+\dfrac{x+y}{\left(z-x\right)\left(z-y\right)}\)
\(=\dfrac{y+z}{\left(x-y\right)\left(x-z\right)}-\dfrac{x+z}{\left(x-y\right)\left(y-z\right)}+\dfrac{x+y}{\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{y^2-z^2-x^2+z^2+x^2-y^2}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)