a )
Sử dụng Cô-si , ta có :
\(x+y\ge2\sqrt{xy}\) (1)
\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\) (2)
Nhân cả vế (1) vế (2) lại ta có :
\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}=4\)
\(\LeftrightarrowĐPCM.\)
\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1+\dfrac{x}{y}+\dfrac{y}{x}+1\ge1+2+1=4\ge0\)