Sửa đề:
\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
\(=\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}-\dfrac{y^2}{\left(y-z\right)\left(x-y\right)}+\dfrac{z^2}{\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=1\)