Rút gọn:
A = \(\sqrt{2}\left(\sqrt{8}-\sqrt{32}-2\sqrt{18}\right)\)
B = \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
C = \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D = \(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
E = \(\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\sqrt{2}+2\sqrt{5}\)
F = \(\left(\sqrt{14}-\sqrt{10}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
G = \(\sqrt{11-4\sqrt{7}}-\sqrt{2}\times\sqrt{8+3\sqrt{7}}\)
Tính
1) \(\sqrt{18}.\sqrt{2}\)
2) \(\sqrt{15^2-9^2}\)
3) \(\sqrt{46-6\sqrt{5}}-\sqrt{46+6\sqrt{5}}\)
4)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
5) \(\left(2+\sqrt{5}\right).\sqrt{9-4\sqrt{5}}\)
6)\(\left(3-\sqrt{2}\right).\sqrt{7+4\sqrt{3}}\)
7)\(\left(\sqrt{3}+\sqrt{5}\right).\sqrt{7-2\sqrt{10}}\)
8)\(\left(\sqrt{6}+\sqrt{10}\right).\sqrt{4-\sqrt{15}}\)
9) \(\sqrt{2}.\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
10) \(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
11) \(\sqrt{3}-\sqrt{2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
12) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right).\sqrt{2}+2\sqrt{5}\)
\(\sqrt{4+2\sqrt[]{}3}\)
\(\left(\sqrt{ }7+\sqrt{ }3\right)^2\)
\(\left(\sqrt{ }5-\sqrt{ }3+1\right)\left(\sqrt{ }5-1\right)\)
\(\left(5\sqrt{ }3-2\sqrt{ }7\right)\left(5\sqrt{ }3+2\sqrt{ }7\right)\)
tính các biểu thức sau
B= \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\sqrt{2}\)
C= \(\sqrt{4-\sqrt{7}}-\sqrt{4}+\sqrt{7}\)
D= \(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
E= \(\sqrt{4+2\sqrt{2}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
F= \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
G= \(\left(\sqrt{14}-\sqrt{10}\right).\left(\sqrt{6+\sqrt{35}}\right)\)
H= \(\sqrt{11-4\sqrt{7}}-\sqrt{2}.\sqrt{8+3\sqrt{7}}\)
\(A=\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3}-\sqrt{5}\)
B=\(B=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8}-2\sqrt{15}\)
\(Cho\sqrt{8-a}+\sqrt{5+a}=5tinh\sqrt{\left(8-a\right)\left(5+a\right)}\)
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt{4\left(a-3\right)^2}+2\sqrt{a^2+4a+4}\left(a< -2\right)\)
b, \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-2\right)^2}}+\dfrac{x^2-1}{x-3}\left(x< 3\right)\)
c, \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
bài 2 thực hiện phép tính :\
a, \(\sqrt{8-\sqrt[2]{7}}\times\sqrt{8+\sqrt[2]{7}}\)
b, \(\sqrt{4+\sqrt{8}+}+\sqrt{2}+\sqrt{2+\sqrt{2}}\times\sqrt{2-\sqrt{2+2}}\)
c, \(\left(4+\sqrt{15}\right)\times\sqrt{10}-\sqrt{6}\times\sqrt{4-\sqrt{15}}\)
d, \(\left(2+\sqrt{3}\right)^2-\left(2-\sqrt{3}\right)\times\left(2+\sqrt{3}\right)\)
A)\(\left(3-2\sqrt{2}\right).\left(3+2\sqrt{2}\right)\) B) \(\sqrt{\left(\sqrt{3}-2\right)}^2-\sqrt{\left(\sqrt{3}+2\right)}^2\) C)\(\sqrt{3-2\sqrt[]{2}}-\sqrt{3+2\sqrt{2}}\)
D)\(\left(1+\sqrt{3}-\sqrt{2}\right).\left(1+\sqrt{3}+2\right)\)
E) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) F)\(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
H)\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
Rút gọn biểu thức
a. \(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}+\sqrt{7}\right)\)
b.\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
c. \(\sqrt{9+4\sqrt{5}}\)
d. \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}\)
e. \(\sqrt{55-6\sqrt{6}}\)
f. \(\sqrt{21-6\sqrt{6}}\)
Tính:
a) \(\left(\sqrt{7}-\sqrt{5}+\sqrt{2}\right)\)\(\left(\sqrt{2}-\sqrt{7}-\sqrt{5}\right)\)
b) \(\sqrt{2}\cdot\sqrt{2+\sqrt{3}}\)
c) \(\left(\sqrt{2}-\sqrt{6}\right)\)\(\sqrt{2+\sqrt{3}}\)