Xét:
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\left(\frac{1}{k}-\frac{1}{k+1}\right)^2+\frac{2}{k\left(k+1\right)}+1=\frac{1}{k^2\left(k+1\right)^2}+\frac{2}{k\left(k+1\right)}+1=\left(\frac{1}{k\left(k+1\right)}+1\right)^2\)
\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{1}{k\left(k+1\right)}+1\)\(=1+\frac{1}{k}-\frac{1}{k+1}\)
Cho \(k\)chạy từ 1 đến 2010 ta có
Tổng cần tính
\(=\)\(1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2010}-\frac{1}{2011}\)
\(=2011-\frac{1}{2011}=\frac{2010.2012}{2011}\)