Đặt \(A=100^2-99^2+98^2-97^2+96^2-95^2+...+2^2-1^2\)
\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(A=2.100-1+2.98-1+2.96-1+...+2.2-1\)
\(A=2.\left(100+98+...+2\right)-50\)
\(A=\dfrac{2.\left[\left(100-2\right):2+1\right].\left(100+2\right)}{2}-50\)
\(A=50.102-50\)
\(A=50.\left(201-1\right)\)
\(A=50.101\)
\(A=5050\)