Đặt A = \(100^2-99^2+98^2-97^2+96^2-95^2+2^2-1^2\)
A\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+\left(96-95\right)\left(96+95\right)+...+\left(2-1\right)\left(2+1\right)\)
A \(=199+195+191+...+3\)
A gồm \(\dfrac{\left(199-3\right)}{4}+1=50\) ( số hạng )
Vậy A = \(\dfrac{\left(199+3\right).50}{2}=5050\)