\(=\lim\limits_{x\rightarrow1^+}\left(x-1\right)\left(x^2+x+1\right)\sqrt{\frac{x}{\left(x-1\right)\left(x+1\right)}}\)
\(=\lim\limits_{x\rightarrow1^+}\left(x^2+x+1\right)\sqrt{\frac{x\left(x-1\right)}{x+1}}=3.0=0\)
\(=\lim\limits_{x\rightarrow1^+}\left(x-1\right)\left(x^2+x+1\right)\sqrt{\frac{x}{\left(x-1\right)\left(x+1\right)}}\)
\(=\lim\limits_{x\rightarrow1^+}\left(x^2+x+1\right)\sqrt{\frac{x\left(x-1\right)}{x+1}}=3.0=0\)
Bài 1:Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) ,\(g\left(x\right)=\sqrt{f\left(x\right)+6}-2\sqrt[3]{f\left(x\right)-2}\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt{x}-1\right)g\left(x\right)}\)
Bài 2: Cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2ax^2+30}-bx-5}{x^3-3x+2}=c\left(a;b;c\in R\right)\)
Tính giá trị \(P=a^2+b^2+36c\)
Bài 3: Cho a;b là các số nguyên dương. Biết \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+ax}+\sqrt[3]{8x^3+2bx^2+3}\right)=\dfrac{7}{3}\)
Tinh P= a+2b
Bài 4:Cho a,b,c thuộc R với a>0 thỏa mãn
\(c^2+a=2\) và \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=-3\)
Tính P= a+b+5c
Bài 5:
Mấy câu này khó nên mong các bạn giúp mình với. Mai mình phải kiểm tra rồi
\(\lim\limits_{x\rightarrow1}\frac{x-x^2}{\left(2x-1\right)\left(x^5-3\right)}\)
\(\lim\limits_{x\rightarrow0}x\left(1-\frac{1}{x}\right)\)
\(\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)\left(1-\sqrt[4]{x}\right)\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)^4}\)
giúp với
đ14b4c5
\(\lim\limits_{x\rightarrow1}\frac{x-1}{\left(x^2+3x-2\right)\sqrt{x+3}-4}\)
đ14b4c5
\(\lim\limits_{x\rightarrow1}\frac{x-1}{\left(x^2+3x-2\right)\sqrt{x+3}-4}\)
Biết \(\lim\limits_{x\rightarrow1}\left[\dfrac{5}{\left(x-1\right)^2}\left(a+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}\right)\right]=\dfrac{b}{c}\) là phan số tối giản. Tính a+b+c
Tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\left(x^2+3x+1\right)\sqrt{1+3x}-10}{x^2-1}\)
\\(\\lim\\limits_{x\\rightarrow8}\\frac{\\sqrt[3]{x}-2}{2x-16}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow-2}\\frac{\\sqrt{x-3}-1}{\\sqrt[3]{x-6}+2}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow1}\\frac{2x-1-\\sqrt{x^2+2x-2}}{x^2-4x+3}\\)
\nTính \(\lim\limits_{x\rightarrow1}=\frac{\left(x^2+x+1\right)^{2018}+\left(x+2\right)^{2018}-2.3^{2018}}{\left(x-1\right)\left(x+2017\right)}\)