(12x^2-6x+4)/(x^2+1)= (3x^2+3+9x^2-6x+1)/(x^2+1)= 3(x^2+1)+(3x-1)^2/(x^2+1)=3+(3x-1)^2
Vì (3x-1)^2 >= 0 => để đạt GTNN thì (3x-1)^2=0. Vậy GTNN là 3 tại x=1/3 ( tự tìm nghiệm x)
(12x^2-6x+4)/(x^2+1)= (3x^2+3+9x^2-6x+1)/(x^2+1)= 3(x^2+1)+(3x-1)^2/(x^2+1)=3+(3x-1)^2
Vì (3x-1)^2 >= 0 => để đạt GTNN thì (3x-1)^2=0. Vậy GTNN là 3 tại x=1/3 ( tự tìm nghiệm x)
Tìm GTNN của \(A=x^4+6x^3+13x^2+12x+12\)
Tim GTNN va GTLN :
b)N=12x+34/x^2+2
b)A=6x+8/x^2+1
c)B=6x+11/x^2-2x+3
d)N=6x+17/x^2+2
Tim GTNN va GTLN :
b)N=12x+34/x^2+2
b)A=6x+8/x^2+1
c)B=6x+11/x^2-2x+3
d)N=6x+17/x^2+2
Tìm \(MinP=\frac{12x^2-6x+4}{x^2+1}=\)
a) \(\frac{1+8x}{8x+4}=\frac{2x}{6x-3}-\frac{8x^2}{3-12x^2}\)
b)(x-2)(x-3)<(x-4)2-2(x+3)
tìm giá trị nhỏ nhất
P=\(\frac{12x^{2^{ }}-6x+4}{x^2+1}\)
\(\frac{12x+1}{6x-2}-\frac{9x-5}{3x+1}=\frac{108x-36x^2-9}{4\left(9x^2-1\right)}\)
Tìm GTNN của \(A=\frac{3x^2-12x+10}{x^2-4x+5}\)
a)Tìm GTLN của biểu thức:
A=\(\dfrac{3x^2-12x+20}{x-4x+5}\)
b)Tìm GTNN của biểu thức:
B=\(\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)