1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)
\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6
\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6
\(\Leftrightarrow\) 11x = 9
\(\Leftrightarrow\) x = 0,8
Vậy S = {0,8}
2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12
\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)
\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x
\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20
\(\Leftrightarrow\) 17x = 7
\(\Leftrightarrow\) x = \(\frac{7}{17}\)
Vậy S = {\(\frac{7}{17}\)}
3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15
\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)
\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3
\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3
\(\Leftrightarrow\) 4x = 2
\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)
Vậy S = {\(\frac{1}{2}\)}
4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12
\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)
\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24
\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24
\(\Leftrightarrow\) 5x = -58
\(\Leftrightarrow\) x = -11,6
Vậy S = {-11,6}
5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)
\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x
\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10
\(\Leftrightarrow\) -8x = -1
\(\Leftrightarrow\) x = \(\frac{1}{8}\)
Vậy S = {\(\frac{1}{8}\)}
6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12
\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)
\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x
\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3
\(\Leftrightarrow\) -5x = -2
\(\Leftrightarrow x=\frac{2}{5}\)
7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)
\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0
\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4
\(\Leftrightarrow\) -3x = -18
\(\Leftrightarrow\) x = 6
Vậy S = {6}
8) x\(^2\) - x - 6 = 0
\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0
\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0
\(\Leftrightarrow\) (x - 3).(x + 2) = 0
\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0
\(\Leftrightarrow\) x = 3 hoặc x = -2
Vậy S = {3; -2}
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Cho biểu thức: \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a) Rút gọn M
b) Tìm các giá trị nguyên của x để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
Giaỉ phương trình: \(\frac{2x+3}{2x+1}-\frac{2x+5}{2x+7}=1-\frac{6x^2+9x-9}{\left(2x+1\right)\left(2x+7\right)}\)
3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
Bài 3: Giải các phương trình sau bằng cách đưa về dạng ax+b =0 :
a) \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
b) \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
d) \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
Cho biểu thức: \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a) Rút gọn M
b) Tìm các giá trị nguyên của x để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
LÀM ƠN GIÚP MK VS!!!HELP ME!!!QAQ
Bài 1: Giải phương trình:
a, \(\frac{5x-1}{3}+\frac{7x-1,1}{3}-\frac{1,5-5x}{7}=\frac{9x-0,7}{4}\)
Bài 2: Giải các phương trình sau bằng cách đưa về phương trình tích:
a, \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
b, \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
c, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)
d, \(x^3-5x^2+6x=0\)
e, \(2x^3+3x^2-32x=48\)