Tính giá trị biểu thức: A\(=\)\(\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}(a+\frac{1}{a})\) , \(y=\frac{1}{2}(b+\frac{1}{b})\)
Cho \(A=\left(2-\frac{2\sqrt{xy}+1}{\sqrt{xy}+1}+\frac{1}{1-\sqrt{xy}}+\frac{2\sqrt{x}}{1-xy}\right):\left(\frac{\sqrt{xy}-\sqrt{x}}{\sqrt{xy}+1}-\frac{\sqrt{xy+\sqrt{x}}}{\sqrt{xy}-1}\right)\)
a, Cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=12\) Chứng minh \(A\le36\) b, Cho \(x^2+9y^2=18\) . Tính GTNN của A
Xác định gt các bt sau:
\(a.A=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right),y=\frac{1}{2}\left(b+\frac{1}{b}\right)\) (a>1; b>1)
\(b.B=\frac{\sqrt{a+bx}+\sqrt{a-bx}}{\sqrt{a+bx}-\sqrt{a-bx}}\) với \(x=\frac{2am}{b\left(1+m^2\right)},\left|m\right|< 1\)
a. A=(\(\frac{3x+16\sqrt{x}-7}{x+2\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}+7}{\sqrt{x}-1}\)) : (\(2-\frac{\sqrt{x}}{\sqrt{x}-1}\))
b. B=(\(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\)) :( 1-\(\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\))
c. C=( \(\frac{\sqrt{x}-4x}{1+4x}-1\)):(\(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}}-1\))
d. D=(\(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a+b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\))\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
e. E=\(\frac{\left(\sqrt{a}-\sqrt{b}\right)+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Giải HPT:
\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}=\frac{2}{\sqrt{xy+1}}\\x+\frac{y\sqrt{3}}{\sqrt{xy-3}}=2\sqrt{6}\end{matrix}\right.\)
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2+xy=5\\27x^3+6y^2x=2+y^3+30x^2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\), \(\left\{{}\begin{matrix}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\2\left(2x+\sqrt{y}\right)=\sqrt{2x+6}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y-3x-1=3x\sqrt{y}\left(\sqrt{1-x}-1\right)^3\\\sqrt{8x^2-3xy+4y^2}+\sqrt{xy}=4y\end{matrix}\right.\)
Cho các số a,b,c là các số k âm sao cho tổng hai số bất kì đều dương.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{16\sqrt{ab+bc+ac}}{a+b+c}\ge8\)
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
Cho số dương x,y,z thõa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm Max \(K=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)