Cho hình vuông ABCD cạnh a . Tính giá trị các biểu thức sau:
a) \(\overrightarrow{AB}.\overrightarrow{AC}\)
b)\(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)
c)\(\overrightarrow{AB}.\overrightarrow{BD}\)
d) \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)\)
e) \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)
tìm các giá trị của a (0-180 độ) để biểu thức sau đạt GTNN . tìm GTNN đó
A=\(\dfrac{1}{1+sina}\) B=\(\dfrac{1}{1-cosa}\)
trong mặt phẳng Oxy cho các điểm A(2;3), I\(\left(\dfrac{11}{2};\dfrac{7}{2}\right)\). B là điểm đối xứng với A qua I. Giả sử C là điểm có tọa độ (5;y). Tổng các giá trị của y đêt tam giác ABC vuông tại C là?
Cho A(-2x,3); B(-3,x+1). Gọi \(\alpha\) là gốc giữa 2 véctơ A và B. a)Tìm giá trị nguyên min của x sao cho \(\alpha\) tù
b) tìm x biết \(\alpha\) =45 độ
Trong mặt phẳng tọa độ Oxy cho vectơ a =(3;2 ) và vectơ b = (-1;5). Giá trị của vt a + vt b bằng bao nhiêu
cho hình thoi abcd cạnh a, góc bad bằng 30 độ. tính diện tích hình thoi abcd
trong mặt phẳng tọa độ Oxy cho điểm M(3,1).giả sử A(a,0) và B(0,b) (với a,b là các số thực không âm) là hai điểm sao cho tam giác MAB vuông tại M và có diện tích nhỏ nhất.Tính giá trị biểu thức T=a2+b2