a: \(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{-2x\cdot\left(-3\right)+3\cdot\left(x+1\right)}{\sqrt{4x^2+9}\cdot\sqrt{9+x^2+2x+1}}=\dfrac{6x+3x+3}{\sqrt{\left(4x^2+9\right)\left(x^2+2x+10\right)}}\)
Để góc a tù thì cos a<0
=>9x+3<0
=>a<-1/3
b: Để a=45 độ thì \(\dfrac{9x+3}{\sqrt{\left(4x^2+9\right)\left(x^2+2x+10\right)}}=\dfrac{1}{\sqrt{2}}\)
=>\(\sqrt{2\left(9x+3\right)^2}=\sqrt{\left(4x^2+9\right)\left(x^2+2x+10\right)}\)
\(\Leftrightarrow2\left(9x+3\right)^2=\left(4x^2+9\right)\left(x^2+2x+10\right)\)
=>\(x\simeq4,76\)