Tính giá trị của biểu thức:
E = \(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết \(1-\frac{x^2}{abc}=0\)
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
a) CMR biểu thức ko âm với mọi x,y,z.
M=4x(x+y)(x+y+z)(x+z)+y2z2
b) Tính giá trị của biểu thức
E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}\) + \(\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}\) +\(\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết 1-\(\frac{x^2}{abc}\) =0
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Cho a,b,c #0 giải phân thức:\(\frac{x}{\left(a-b\right).\left(a-c\right)}+\frac{x}{\left(b-a\right).\left(b-c\right)}+\frac{x}{\left(c-a\right).\left(c-b\right)}=2\)
Giải phương trình:
a,\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
b,\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+c\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
Giúp hộ!!!
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và \(\frac{a}{x}+\frac{b}{y}+\frac{x}{z}=2\) .
Tìm giá trị của biểu thức:\(A=\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2\) (1) ; \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\) (2)
tính giá trị biểu thức D = \(\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
Câu 1:
Cho x=\(\frac{b^2+c^2-a^2}{2bc}\);y=\(\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
Tính giá trị P=x+y+xy
Câu 2:
Giải phương trình:
a) \(\frac{1}{a+b-x}\)=\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{x}\)(x là ẩn số)
b)\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}\)+\(\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}\)+\(\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}\)=0
(a, b, c là hằng số và đôi một khác nhau)