Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\) và \(\frac{a}{x}+\frac{b}{y}+\frac{x}{z}=2\) .
Tìm giá trị của biểu thức:\(A=\left(\frac{a}{x}\right)^2+\left(\frac{b}{y}\right)^2+\left(\frac{c}{z}\right)^2\)
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
a) CMR biểu thức ko âm với mọi x,y,z.
M=4x(x+y)(x+y+z)(x+z)+y2z2
b) Tính giá trị của biểu thức
E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}\) + \(\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}\) +\(\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết 1-\(\frac{x^2}{abc}\) =0
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
Đề:
Cho các số thực x, y, z thoả mãn x + y + z = 1 và \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
\(\left(x\ne-y;y\ne-z;z\ne-x\right)\)
Giá trị của biểu thức \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\) là . . .
Giải:
x + y + z = 1
=> x = 1 - (y + z)
y = 1 - (x + z)
z = 1 - (x + y)
Thay x = 1 - (y + z); y = 1 - (x + z) và z = 1 - (x + y) vào P, ta có:
\(P=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)
\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)
\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)\)
\(=1-1\)
\(=0\)
ĐS: 0
Trịnh Trân Trân <3
thực hiện phép tính
a, \(\frac{x^2-yz}{1+\frac{y+x}{x}}+\frac{y^2-xz}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b, \(\left(1+\frac{y^2+z^2-x^2}{2yz}\right).\frac{1+\frac{x}{y+z}}{1-\frac{x}{y+z}}.\frac{y^2+z^2-\left(y-z\right)^2}{x+y+z}\)
c,\(\frac{2}{3}\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\)
Tính \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax^2+by^2+cz^2\right)}\)
chứng minh đẳng thức sau
a,\(\frac{x^2+3xy}{x^2-9y^2}+\frac{2x^2-5xy-3y^2}{6xy-x^2-9y^2}=\frac{x^2+xz+xy+yz}{3yz-x^2-xz+3xy}\)
b,\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
rút gọn các phân thức
a) \(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\) d) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)
b) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\) c) \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)
e)\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}\)