Ta có:
\(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
\(\Rightarrow A=\frac{2019x+2020y}{2019x-2020y}=\frac{2019.2k+2020.3k}{2019.2k-2020.3k}=\frac{10098k}{-2022k}=\frac{10098}{-2022}=\frac{-1683}{337}\)
Ta có:
\(\frac{x}{2}=\frac{y}{3}.\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
Lại có: \(A=\frac{2019x+2020y}{2019x-2020y}.\)
+ Thay \(x=2k\) và \(y=3k\) vào A ta được:
\(A=\frac{2019.2k+2020.3k}{2019.2k-2020.3k}\)
\(\Rightarrow A=\frac{4038k+6060k}{4038k-6060k}\)
\(\Rightarrow A=\frac{k.\left(4038+6060\right)}{k.\left(4038-6060\right)}\)
\(\Rightarrow A=\frac{4038+6060}{4038-6060}\)
\(\Rightarrow A=\frac{10098}{-2022}\)
\(\Rightarrow A=\frac{-1683}{337}.\)
Vậy \(A=\frac{-1683}{337}.\)
Chúc bạn học tốt!