x : y : z : t = 3 : 5 : 7 : 9 mà x + y + z + t = 12;
=> Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{t}{9}\)
=> \(\dfrac{x+y+z+t}{3+5+7+9}\) = \(\dfrac{12}{24}=0,5.\)
Suy ra:
x = 0,5 . 3 = 1,5;
y = 0,5 . 5 = 2,5;
z = 0,5 . 7 = 3,5;
t = 0,5 . 9 = 4,5.
Vậy x = 1,5, y = 2,5, z = 3,5, t = 4,5.
Ta có: x:y:z:t=3:5:7:9
suy ra \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{t}{9}\)
Mà x + y + z + t = 12 ( theo đề bài )
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{t}{9}=\dfrac{x+y+z+t}{3+5+7+9}\)
= \(\dfrac{12}{24}=\dfrac{1}{2}\)
+) \(\dfrac{x}{3}=\dfrac{1}{2}\) suy ra x = \(\dfrac{3}{2}\)
+) \(\dfrac{y}{5}=\dfrac{1}{2}\) suy ra y = \(\dfrac{5}{2}\)
+) \(\dfrac{z}{7}=\dfrac{1}{2}\) suy ra z = \(\dfrac{7}{2}\)
+) \(\dfrac{t}{9}=\dfrac{1}{2}\) suy ra t = \(\dfrac{9}{2}\)
Vậy x = \(\dfrac{3}{2}\) ; y = \(\dfrac{5}{2}\) ; \(z=\dfrac{7}{2};t=\dfrac{9}{2}\)