a) Có x, y, z tỉ lệ với 3, 5, 7 tức là \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
x + y + z =210
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{210}{15}=14\)
\(\Rightarrow\left\{{}\begin{matrix}x=14.3=42\\y=14.5==70\\z=14.7=98\end{matrix}\right.\)
vậy...
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.5=30\\y=6.6=36\\z=6.7=42\end{matrix}\right.\)
vậy...
c)Vì BCNN (3; 4) = 12
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.4}=\frac{y}{3.4}=\frac{x}{8}=\frac{y}{12}\)
\(\Rightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{4.3}=\frac{z}{5.3}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x+3y+5z}{16+36+75}=\frac{127}{127}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.8=8\\y=1.12=12\\z=1.15=15\end{matrix}\right.\)
Vậy...
a) Ta có:
x, y, z tỉ lệ với 3, 5, 7
⇒\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{210}{15}=14\)
⇒\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=14\Rightarrow\left\{{}\begin{matrix}x=42\\y=70\\z=98\end{matrix}\right.\)
b)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
⇒\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=6\Rightarrow\left\{{}\begin{matrix}x=30\\y=36\\z=42\end{matrix}\right.\)
c)\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{4}=\frac{y}{3}.\frac{1}{4}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{z}{5}=\frac{y}{4}\Rightarrow\frac{z}{5}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{z}{15}=\frac{y}{12}\) (2)
Từ (1) và (2) ⇒\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{16}=\frac{3y}{36}=\frac{5z}{75}=\frac{2x+3y+5z}{16+36+75}=\frac{127}{127}=1\)
⇒\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=1\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=15\end{matrix}\right.\)