Xét \(x+y=z+95\Rightarrow x+y-z=95\) (*)
Ta có:
\(2x=3y=5z\)
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Từ (*) và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
Vậy \(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)