\(2x=3y=5z\)\(\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\) và \(x+y+z=95\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{95}{\dfrac{31}{30}}=\dfrac{2850}{31}\)
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{2850}{31}\Rightarrow x=\dfrac{1425}{31}\)
\(\dfrac{y}{\dfrac{1}{3}}=\dfrac{2850}{31}\Rightarrow y=\dfrac{950}{31}\)
\(\dfrac{z}{\dfrac{1}{5}}=\dfrac{2850}{31}\Rightarrow z=\dfrac{570}{31}\)
Vậy \(x=\dfrac{1425}{31}\) ; \(y=\dfrac{950}{31}\) ; \(z=\dfrac{570}{31}\)