1. Tìm m để hệ có đúng 3 nghiệm \(\left\{{}\begin{matrix}xy\left(x-2\right)\left(y-6\right)=m\\x^2+y^2-2\left(x+3y\right)=3m\end{matrix}\right.\)
2. Tìm m để phương trình có duy nhất nghiệm thỏa mãn \(x\le3\):
\(x^2-\left(m+3\right)x+2m-1=0\)
Tìm m thỏa mãn
a) \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0\) có tập nghiệm S=R
b) \(\left(m+1\right)x^2-2mx-\left(m-3\right)< 0\) vô nghiệm
c) \(f\left(x\right)=-x^2+2x+m-2018< 0\forall x\in R\)
d) \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm
Cho x, y, z là các số thực thuộc (0;1) thỏa mãn điều kiện \(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+3xy-\left(x^2+y^2\right)\)
cho x, y là hai số thực thỏa mãn (x - 4)2 + (y - 3)2 = 5 và biểu thức
Q=\(\sqrt{\left(x+1\right)^2+\left(y-3\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\) đạt giá trị lớn nhất. Tìm P = x + y
Cho x,y là các số thực dương thỏa mãn đồng thời các điều kiên:
1) \(\left(x+2\right)\left(y+2\right)=3\left(x^2+y^2+\sqrt{xy}\right)\)
2) \(\left(\sqrt{x}+\sqrt{y}\right)^3=4\left(x^3+y^3\right)\)
CMR: \(\sqrt{x}+\sqrt{y}=2\)
Tìm hàm số f(x) thỏa mãn
a)\(f\left(x-1\right)+3f\left(\dfrac{1-x}{1-2x}\right)=1-2x,\forall x\ne\dfrac{1}{2}\)
b)\(f\left(x\right)+f\left(\dfrac{1}{1-x}\right)=x+1-\dfrac{1}{x},\forall x\ne0;x\ne1\)
c) \(3f\left(x\right)-2f\left(f\left(x\right)\right)=x,\forall x\in Z\)
Giải hpt: \(\left\{{}\begin{matrix}\left(x+y\right)\left(y+z\right)=187\\\left(y+z\right)\left(z+x\right)=154\\\left(z+x\right)\left(x+y\right)=238\end{matrix}\right.\)
(x, y, z > 0)
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{3}\left(x+y+z\right)\sqrt[3]{x^2y^2z^2}\)
Giá trị x thuộc tập nào sau đây để thỏa mãn: \(\left|x^2-4x+3\right|=x^2-4x+3\)
A. \(\left[1;3\right]\)
B. \((-\infty;1]\)
C. \((-\infty;1]\cup[3;+\infty)\)
D. \(\left(3;+\infty\right)\)