Ta có:
\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}\)
\(7y=6z\Rightarrow\dfrac{y}{30}=\dfrac{z}{35}\)
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}=\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=30\\z=35\end{matrix}\right.\)
Vậy...
Ta có: \(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\) (1)
\(7y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{7}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{x}{3}=\dfrac{y}{5};\dfrac{y}{6}=\dfrac{z}{7}\Leftrightarrow\dfrac{x}{18}=\dfrac{y}{30};\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)
Có \(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)và \(4x+8y-9z=-3\)
Áp dụng tính chất dãu tỉ số bằng nhau ta có:
\(\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\Rightarrow\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240-315}=\dfrac{-3}{-3}=1\)
\(\dfrac{4x}{72}=1\Rightarrow4x=72\Rightarrow x=\dfrac{72}{4}=18\)
\(\dfrac{8y}{240}=1\Rightarrow8y=240\Rightarrow y=\dfrac{240}{8}=30\)
\(\dfrac{9z}{315}=1\Rightarrow9z=315\Rightarrow z=\dfrac{315}{9}=35\)
Vậy x=18 ; y=30 ; z=35
Ta có:
\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}\)
\(7y=6z\Rightarrow\dfrac{y}{30}=\dfrac{z}{35}\)
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{18}=\dfrac{y}{30}=\dfrac{z}{35}=\dfrac{4x}{72}=\dfrac{8y}{240}=\dfrac{9z}{315}=\dfrac{4x+8y-9z}{72+240- 315}=\dfrac{-3}{-3}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=30\\z=35\end{matrix}\right.\)
Vậy...