Ta có: M = \(8x^2+y^2-4xy-16x+17\)
<=> M = \(\left(4x^2-4xy+y^2\right)+\left(4x^2-16x+16\right)+1\)
<=> M = \(\left(2x-y\right)^2+\left(2x-4\right)^2+1\)
Vì \(\left\{{}\begin{matrix}\left(2x-y\right)^2\ge0\\\left(2x-4\right)^2\ge0\end{matrix}\right.\) => M \(\ge\) 1
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}2x-y=0\\2x-4=0\end{matrix}\right.\) <=> x = 2; y = 4
=> GTNN của M = 1 khi x = 2; y= 4