a: Sửa đề: \(A=\dfrac{x^3+2x^2+6x+8}{x+1}\)
Để A là số nguyên thì \(x^3+x^2+x^2+x+5x+5+3⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-2;2;-4\right\}\)
b: Để \(\dfrac{2x^2+x-2}{x-3}\) là số nguyên thì \(2x^2-6x+7x-21+19⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{4;2;22;-16\right\}\)