A = \(\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\)
Vì A \(\in\) Z => \(\dfrac{5}{x-2}\in\) Z
hay 5 chia hết cho x-2
=> x-2 \(\in\)Ư(5)
Ta có bảng
x-2 -5 -1 1 5
x -3(TM) 1(TM) 3(TM) 7(TM)
Vậy x \(\in\){ -3;1;3;7}
\(A=\dfrac{x+3}{x-2}\)
=> \(A=\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\)
=> 5\(⋮x-2\)
Hay \(x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
=> \(\left[{}\begin{matrix}x-2=-1=>x=1\\x-2=1=>x=3\\x-2=-5=>x=-3\\x-2=5=>x=7\end{matrix}\right.\)
Mà \(x\in z\)
=> dpcm