Cho biểu thức :
A= \(\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{x^2-2x+1}{2}\right)\)
a) Xác định x để A tồn tại .
b) Rút gọn .
c) Tìm x thuộc Z để A nhận giá trị nguyên .
d) Tìm x để A nhận giá trị âm .
Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên
Bài 4: Cho hệ phương trình mx + 2my = m +1 và x + (m+1)y = 2
a) CM nếu hệ có nghiệm duy nhất (x;y) thì điểm M(x;y) luôn thuộc một đường thẳng cố định.
b) Xác định m để điểm M(x;y) thuộc góc phần tư thứ nhất.
c) Xác định m để điểm M(x;y) thuộc đường tròn có tâm là gộc tọa độ và bán kính bằng \(\sqrt{5}\)
a) Giả phương trình : \(x\left(x+2\right)^2=\dfrac{5}{x+4}\)
b) Giả hệ phương trình : \(\left\{{}\begin{matrix}2x^2-xy-y^2+2x+y=0\\\sqrt{x+y}+\sqrt{3x+y}=0\end{matrix}\right.\)
Bài 1: Tìm a để hệ pt vô nghiệm: \(\left\{{}\begin{matrix}\sqrt{2}x+ay=-1\\5\sqrt{2}x+3\sqrt{3}y=1\end{matrix}\right.\)
Bài 2: Tìm m và k để hệ pt vô số nghiệm: \(\left\{{}\begin{matrix}2x-3y=2\\mx+ky=4\end{matrix}\right.\)
Bài 3: Chứng minh (D): y=2x+1 ; (\(D_1\)): 2y+x=7 và (\(D_2\)): y=x+2 đồng quy
Bài 4: Tìm m để hệ pt có 1 nghiệm duy nhất: \(\left\{{}\begin{matrix}3+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
Bài 5: a) Dùng phương pháp hình học để ktra kết quả của phương trình: \(\left\{{}\begin{matrix}x-3y=0\\2x-y=5\end{matrix}\right.\)
b) Tìm tọa độ của (d): y=x+1 và (d'): y=3x-2 bằng đồ thị và bằng phép toán
Mọi người giúp em với ạ!!!!!!!!!
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
1. giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
2. cho hpt \(\left\{{}\begin{matrix}2x+3y=3a\\ax-y=2\end{matrix}\right.\) (a là tham số) tìm nghiệm duy nhất của hpt thỏa mãn \(2x+y^2=1\)
3. cho hpt \(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) tìm nghiệm duy nhất của hpt thỏa mãn x<0; y<0
4. cho hpt \(\left\{{}\begin{matrix}y-16x=m\\m^2-y=-4\end{matrix}\right.\) tìm m để hpt có nghiệm nguyên
giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)