Lời giải:
Để $\sqrt{x}+1\in\mathbb{Z}$ thì $\sqrt{x}\in\mathbb{Z}$
Điều này xảy ra khi $x$ là số chính phương.
\(\sqrt{x}+1\) là số nguyên \(\Leftrightarrow\sqrt{x}\) là số nguyên hay \(x\) là số chính phương.
Lời giải:
Để $\sqrt{x}+1\in\mathbb{Z}$ thì $\sqrt{x}\in\mathbb{Z}$
Điều này xảy ra khi $x$ là số chính phương.
\(\sqrt{x}+1\) là số nguyên \(\Leftrightarrow\sqrt{x}\) là số nguyên hay \(x\) là số chính phương.
1) Cho biểu thức:
P=\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)
a) Rút gọn P
b) Tìm x nguyên để P có giá trị nguyên
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a.rút gọn Q
b.tìm số nguyên x để Q có gtri nguyên
cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a. rút gọn biểu thức Q
b.tìm số nguyên x để Q có giá trị nguyên
Tìm x là số thực không âm để \(C=\dfrac{\left(9+2\sqrt{x}\right)}{2+3\sqrt{x}}\varepsilon Z\) là 1 số nguyên
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
Rút gọn: \(Q=\left(\dfrac{\sqrt{x}+1}{\sqrt{x-2}}-\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{3\sqrt{x}-x}{x+4\sqrt{x}+4}\). Tìm các giá trị nguyên của x để Q âm
tìm x nguyên để \(B=\dfrac{\sqrt{x+6}}{\sqrt{x+1}}nguyên\)
cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a.rút gọn Q
b.tìm số nguyên x để Q có gtri nguyên
đáp an: a.Q=\(\dfrac{2}{x-1}\)
b.x=-1;x=0;x=2;x=3 thì Q\(\in Z\)
mk chỉ bt đáp án chứ ko biết cách giải
Tim m để phương trình sau có 2 nghiệm phân biệt đều nguyên: \(x^2-\left(2\sqrt{m}+1\right)x+\sqrt{m}+4=0\)