a) Để \(\sqrt{\left|x\right|-1}\) xác định
<=> \(\left|x\right|\ge1\)
<=> \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
b) Để \(\sqrt{-\left|x+5\right|}\) xác định
<=> \(-\left|x+5\right|\ge0\)
Mà \(\left|x+5\right|\ge0\left(\forall x\right)\)
<=> x + 5 = 0 <=> x = -5
c) Để \(\sqrt{\left|x-1\right|-3}\) xác định
<=> \(\left|x-1\right|\ge3\)
<=> \(\left[{}\begin{matrix}x-1\ge3< =>x\ge4\\x-1\le-3< =>x\le-2\end{matrix}\right.\)
`a)đk:|x|-1>=0`
`<=>|x|>=1`
`<=>` \(\left[ \begin{array}{l}x \ge 1\\x\le -1\end{array} \right.\)
`b)đk:-|x+5|>=0`
`<=>|x+5|<=0`
Mà `|x+5|>=0`
`<=>|x+5|=0`
`<=>x=-5`
`c)đk:|x-1|-3>=0`
`|x-1|>=3`
`<=>` \(\left[ \begin{array}{l}x-1 \ge 3\\x-1 \le -3\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x \ge 4\\x \le -2\end{array} \right.\)