Tìm x để biểu thức sau đạt GTNN
M= \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\left|x+5\right|\)
Tìm GTNN của: D = \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|+\left|x+5\right|\)
Câu 1 : Tìm GTLN
a) \(A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\)
b) \(B=3-\left(2x+\dfrac{1}{3}\right)^6\)
c) \(C=\dfrac{x^{2016}+2017}{x^{2016}+2015}\)
Tìm GTNN của E=\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-n\right|\) \(\left(n>5;n\in N\right)\)
2. Tìm x biết:
a)2(x+2)(x+4)\dfrac{2}{\left(x+2\right)\left(x+4\right)} + 4(x+4)(x+8)\dfrac{4}{\left(x+4\right)\left(x+8\right)} + 6(x+8)(x+14)\dfrac{6}{\left(x+8\right)\left(x+14\right)} = x(x+2)(x+14)\dfrac{x}{\left(x+2\right)\left(x+14\right)}
b)x2023\dfrac{x}{2023} + x+12022\dfrac{x+1}{2022} x+22021\dfrac{x+2}{2021} +...+ x+20221\dfrac{x+2022}{1} + 2023 = 0.
Gíup mình giải 2 bài này với!
Cảm ơn các bạn rất nhiều!!!
Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau
a, A = \(2x^2-2\)
b, B = \(\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\)
c, C = \(\dfrac{\left|x\right|+2017}{2018}\)
d, D = \(3-\left(x+1\right)^2\)
e, E = \(-\left|0,1+x\right|-1,9\)
f, F = \(\dfrac{1}{\left|x\right|+2017}\)
tìm x, biết
a) \(\left|x+2\right|+\left|x-3\right|=7\)
b) \(\left|x+2\right|-6x=1\)
c) \(\left|2x+1\right|+\left|x+8\right|=4x\)
d) \(x+\left|x+2017\right|=-2017\)
Tìm x để biểu thức :
a) A - 0,6 + \(\left|\dfrac{1}{2}-x\right|\)đạt giá trị nhỏ nhất.
b) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)đạt giá trị lớn nhất
Tính giá trị của biểu thức: C=\(\left(x^2-1\right)\left(x^2-2\right)..\left(x^2-2019\right)\) tại x=5