phân tích mẫu của PT A:x2+14x+4=(x+2)2(Theo hằng đẳng thức số 2)
Để A đạt GTLN<=>(x+2)2 đạt nhá trị nhỏ nhất(1)
Lại có:(x+2)2 luôn lớn hơn hoặc bằng 0 với mọi x(2)
Từ (1) và (2)=>x+2=0=>x=-2
Vậy......................
phân tích mẫu của PT A:x2+14x+4=(x+2)2(Theo hằng đẳng thức số 2)
Để A đạt GTLN<=>(x+2)2 đạt nhá trị nhỏ nhất(1)
Lại có:(x+2)2 luôn lớn hơn hoặc bằng 0 với mọi x(2)
Từ (1) và (2)=>x+2=0=>x=-2
Vậy......................
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
tim gia tri cua x de bieu thuc
A=\(\dfrac{-4}{x^2-4x+10}\) co GTNN
B= -2 + 4x +1 co GTLN
C= \(\dfrac{2}{x^2+4x+5}\) co GTLN
D= \(\dfrac{5}{x^2-6x+12}\) co GTLN
E=\(\dfrac{x^2-2x+2018}{x^2}\) co GTNN
rút gọn các phân thức
a,\(\dfrac{7xy^3\left(x-2y\right)}{14x^2y^2\left(x-2y\right)^2}\)
b,\(\dfrac{4a^2-8ab}{2\left(2b-a\right)^3}\)
c,\(\dfrac{3x^3-3x}{x^4-1}\)
d,\(\dfrac{45x\left(3-x\right)}{15x\left(x-3\right)^3}\)
Cho biểu thức: \(A=\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}-\dfrac{2-x}{2+x}\)
a) Tìm điều kiện xác định rồi rút gọn biểu thức A.
b) Tìm x để A = - 5
cho biểu thức A= \(\dfrac{x}{2x+4}\) + \(\dfrac{3x+2}{x^2-4}\)
a) Tìm điều kiện x để giá trị biểu thức A xác định
b) Rút gọn biểu thức A
c) Tìm x để A=0
P = \(\dfrac{x^3-4x^2-x+4}{x^3-7x^2+14x-8}\)
Tìm x nguyên để P nguyên
Cho biểu thức A =
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
a) \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{36}{x^2-9}\)
b) \(\dfrac{2x-1}{x+4}-\dfrac{1-3x}{x-4}=5+\dfrac{96}{x^2-16}\)
c) \(\dfrac{x+3}{x+1}-\dfrac{x-1}{x}=\dfrac{3x^2+4x+1}{x\left(x+1\right)}\)
rút gọn các biểu thức sau :
a, \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)
b, \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
c, \(\dfrac{1-x^2}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3x}{x^2+3x}\)