x = a/(b + c) = b/(c + a) = c/(a + b) = (a + b + c)/(b + c + c + a + a + b) = 1/2
=> x = 1/2
x = a/(b + c) = b/(c + a) = c/(a + b) = (a + b + c)/(b + c + c + a + a + b) = 1/2
=> x = 1/2
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Cho \(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{1}{a+b+c}\left(a,b,c\ne0,a+b+c\ne0\right)\)
Tính \(\left(a-3b\right)\left(b-c\right)\left(3c-a\right)\)
Ai giúp mik đi, mik cho 5 coin
CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\Rightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}.\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a-b\ne0;c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{c-b}=\dfrac{c+d}{c-d}\) ?
Câu 1: Cho \(\dfrac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\dfrac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\). Chứng minh: \(\dfrac{a}{b}=+-\dfrac{c}{d}\)
Câu 2: Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\). Tính giá trị biểu thức: M = \(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Câu 3: Tìm x, y ϵ N biết: \(25-y^2=8\left(x-2009\right)^2\)
Câu 4: Tìm x biết: \(\left|x^2+\left|6x-2\right|\right|=x^2+4\)
Câu 5: Tìm các số nguyên thoả mãn: \(x-y+2xy=7\)
Câu 6: Cho \(a>2,b>2\). Chứng minh: \(ab>a+b\)
cho a+b+c+d khác 0 vàti\(\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}=\dfrac{a+b+c-d}{d}P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{c}{d}\right)\left(1+\dfrac{a}{d}\right)\)tính P
giúp mk với ạ , xin cảm ơn
Cho tỉ le thức\(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\).Chung minh rang \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Cho a; b; c; x; y; z và \(x^2-yz\ne0;y^2-zx\ne0;z^2-xy\ne0\) thỏa mãn \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\). CMR \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
Cho ba số \(a,b,c\) khác nhau và khác 0 \(\left(b+c,a+c,a+b\ne0\right)\)
Thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Tình giá trị của biểu thức \(P=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Giải chi tiết giùm mình nha