\(\left|x-2010\right|+\left|x-2012\right|=2\)
\(\Rightarrow\left|2010-x\right|+\left|x-2012\right|=2\)
Ta có : \(\left|2010-x\right|+\left|x-2012\right|\ge\left|2010-x+x-2012\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2010-x\right)\left(x-2012\right)\ge0\)
\(\Leftrightarrow2010\le x\le2012\)
Vậy \(\Leftrightarrow2010\le x\le2012\)