Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Tìm x, biết :

a) \(x^3-\dfrac{1}{4}x=0\)

b) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

c) \(x^2\left(x-3\right)+12-4x=0\)

Tuyết Nhi Melody
20 tháng 4 2017 lúc 21:57

Bài giải:

a) x314x = 0 => x(x2(12)2) = 0

=>x(x - 12)(x + 12) = 0

Hoặc x = 0

Hoặc x - 12 = 0 => x = 12

Hoặc x + 12 = 0 => x = -12

Vậy x = 0; x = -12; x = 12.

b) (2x – 1)2 – (x + 3)2 = 0

[(2x - 1) - (x + 3)][(2x - 1) + (x + 3)] = 0

(2x - 1 - x - 3)(2x - 1 + x + 3) = 0

(x - 4)(3x + 2) = 0

Hoặc x - 4 = 0 => x = 4

Hoặc 3x + 2 = 0 => 3x = 2 => x = -23

Vậy x = 4; x = -23.

c) x2(x – 3) + 12 – 4x = 0

x2(x – 3) - 4(x -3)= 0

(x - 3)(x2- 22) = 0

(x - 3)(x - 2)(x + 2) = 0

Hoặc x - 3 = 0 => x = 3

Hoặc x - 2 =0 => x = 2

Hoặc x + 2 = 0 => x = -2

Vậy x = 3; x = 2; x = -2.

Đoàn Như Quỳnhh
29 tháng 6 2017 lúc 22:44

a ) \(x^3-\dfrac{1}{4}x=0\)

\(\Leftrightarrow\) \(x\left(x^2-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

Hoặc x = 0

Hoặc \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

Hoặc \(x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)

b) \((2x - 1 )^2 - (x + 3)^2 = 0\)

\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x-3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)

Hoặc \(x-4=0\Rightarrow x=4\)

Hoặc \(3x+2=0\Rightarrow3x=-2\Rightarrow x=-\dfrac{2}{3}\)

c) \(x^2 (x-3) + 12 - 4x = 0\)

\(\Leftrightarrow x^2\left(x-3\right)-\left(4x-12\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-2^2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)

Hoặc \((x - 3) = 0\) \(\Rightarrow\) x = 3

Hoặc \(x - 2 = 0\) \(\Rightarrow\) x = 2

Hoặc \(x + 2 = 0 ​\) \(\Rightarrow\) x = \(- 2\)


Các câu hỏi tương tự
Linh Nguyen
Xem chi tiết
Lê Lê
Xem chi tiết
lê thị hương giang
Xem chi tiết
Phan Hồng Hải
Xem chi tiết
Hòa An Nguyễn
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
nguyễn thái hồng duyên
Xem chi tiết
lương thị hằng
Xem chi tiết
Ánh Tuyết
Xem chi tiết