Bài 1: Phân tích đa thức thành nhân tử:
a) \(2x\left(x+1\right)+2\left(x+1\right)\)
b) \(y^2\left(x^2+y\right)-zx^2-zy\)
c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
e) \(x^2-6xy+9y^2\)
f) \(x^3+6x^2y+12xy^2+8y^3\)
g) \(x^3-64\)
h) \(125x^3+y^6\)
k) \(0,125\left(a+1\right)^3-1\)
t) \(x^2-2xy+y^2-xz+yz\)
q) \(x^2-y^2-x+y\)
p) \(a^3x-ab+b-x\)
đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)
l) \(x^2-x-6\)
i) \(x^4+4x^2-5\)
m) \(x^3-19x-30\)
j) \(x^4+x+1\)
y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)
w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
z) \(\left(x^2-8\right)^2+36\)
u) \(81x^4+4\)
Bài 2 : Tìm x
a)\(\left(2x-1\right)^2-25=0\)
b) \(8x^3-50x=0\)
c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
d) \(3x\left(x-1\right)+x-1=0\)
e) \(2\left(x+3\right)-x^2-3x\) =0
f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
Tìm x, biết:
1) \(x^2-6x=0\)
2) \(2x^3-5x^2-12x=0\)
3) \(\left(x+1\right)\left(x+2\right)-\left(x+2\right)\left(x+3\right)=0\)
Tìm x biết
a. \(x^4-16x^2=0\)
b. \(\left(x-5\right)^3-x+5=0\)
c. \(5.\left(x-2\right)=x^2-4\)
d. \(x-3=\left(3-x\right)^2\)
e. \(x^2.\left(x-5\right)+5-x=0\)
g.\(3x^4-9x^3=-9x^2+27x\)
h. \(x^2.\left(x+8\right)+x^2=-8x\)
i.\(\left(x+3\right).\left(x^2-3x+5\right)=x^2+3x\)
k.\(2.\left(x+3\right)-x^2-3x=0\)
l. \(8x^3-50x=0\)
Tìm x, biết :
a) \(x^3-\dfrac{1}{4}x=0\)
b) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
c) \(x^2\left(x-3\right)+12-4x=0\)
tìm x,biết :
a) \(x\left(x+5\right)\left(x-5\right)=\left(x+2\right)\left(x^2-2x+4\right)=3\)
b) \(2x^3+2\sqrt{2}x^2+x=0\)
cho các pt sau:
A=\(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)
B=\(\dfrac{x^2-9}{x^2-6x+9}\)
C=\(\dfrac{9x^2-16}{3x^2-4x}\)
D=\(\dfrac{x^2+4x+4}{2x+4}\)
E=\(\dfrac{2x-x^2}{x^2-4}\)
F=\(\dfrac{3x^2+6x+12}{x^3-8}\)
a)với điều kiện nào của x thì giá trị của các pt trên xác định
b)tìm x đẻ các giá trị x bằng 0
c)rút gọn các pt trên
Tìm x biết :
a, 2x ( x - 3 ) = \(\left(3-x\right)^2\)
b, \(x^3-49x=0\)
c, \(\left(x+2\right)^2+x^2-4=0\)
d, \(5x^2-5=4\left(x^2-2x+1\right)\)
e, \(x^2-2018x-2019=0\)
tìm x biết
1, 4x^2+4xy+4y^2-6y+3=0
2, \(\left(x+2\right)^2-x^4+4=0\)
3,\(4y^2+4xy+4y^2-6y+3=0\)
2,phân tích cac da tthuc thanh nhân tử
1,1,\(\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)-125\)
2,\(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
bài 1: phân tích thành nhân tử
a) \(^{6x^2}\)+ 9x b) \(4x^2\) + 8x c) \(5x^2\) + 10x
d) \(2x^2\)- 8x e) 5x - 15y f) x (\(x^2\)-1) + 3 (\(x^2\)-1)
g) \(x^2\)- 2x + 1 - \(4y^2\) h) \(x^2\)- 100 i) \(9x^2\)- 18x + 9
k) \(x^3\) - 8 l) \(x^2\)+ \(6xy^2\) + \(9y^4\) m) 4xy - \(4x^2\) - \(y^2\)
n) \(\left(x-15\right)^2\) - 16 o) 25 - \(\left(3-x\right)^2\) p) \(\left(7x-4\right)^2\)- \(\left(2x+1\right)^2\)
Bài 2: phân tích thành nhân tử
a) \(3x^3\) - \(6x^2\) + 3\(x^2y\) - 6xy b) \(x^2\) - 2x + xy -2y
c) 2x + \(x^2\) -2y - 2xy + \(y^2\) d) \(x^2\) - 2xy + \(y^2\) - 9
e) \(x^2\)+ \(y^2\) - 2xy -4 f) 2xy - \(x^2\)- \(y^2\) + 9
h) \(x^2\)- \(y^2\) + 12y - 36 i) \(4x^2\) - 9 - x(2x - 3)
bài 3: tìm x
a) 2(x + 3) - \(x^2\) -3x = 0 b) \(x^3\) - 25x= 0
c) 5(x-9) + \(x^2\) -9x = 0 d) 2(x + 5) - \(x^2\) -5x = 0
e) (2x + 3)(x - 1) + (2x-3)(1 - x) = 0 f) \(x^3\) + \(x^2\) + x + 1 = 0
h) 2x(x + 3) = x+3 i) \(x^2\)(x - 5) - 4x+ 20 = 0