Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Quốc Huy

Tìm x biết: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....................+\frac{1}{\left(x-1\right).x}+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2016}\left(x\in N\right)\)

Diệu Huyền
7 tháng 1 2020 lúc 10:19

Ta thấy các số hạng của vế trái đều có dạng \(\frac{1}{n\left(n+1\right)}\) với \(n\) là số tự nhiên.

Lại có: \(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)

Khi đó, phương trình trở thành:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right)x}+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2016}\)

\(\Leftrightarrow x+1=2016\)

\(\Leftrightarrow x=2015\)

Vậy \(x=2015\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
nguyễn thu hằng
Xem chi tiết
thu dinh
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Natsume Reiko
Xem chi tiết
Trương Thị Thùy Dung
Xem chi tiết