a/ \(\dfrac{x}{9}=\dfrac{16}{x}\)
\(\Leftrightarrow x^2=9.16\)
\(\Leftrightarrow x^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\)
Vậy ...
b/ \(x^3+27=0\)
\(\Leftrightarrow x^3=-27\)
\(\Leftrightarrow x^3=\left(-3\right)^3\)
\(\Leftrightarrow x=-3\)
Vậy ...
c/ \(\left|x\left(x^2-\dfrac{5}{4}\right)=x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x^2-\dfrac{5}{4}\right)=x\\x\left(x^2-\dfrac{5}{4}\right)=-x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^3-\dfrac{5}{4}x=x\\x^3-\dfrac{5}{4}x=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^3-\left(\dfrac{5}{4}x+x\right)=0\\x^3-\left(\dfrac{5}{4}x-x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^3-\dfrac{9}{4}x=0\\x^3-\dfrac{1}{4}x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x^2-\dfrac{9}{4}\right)=0\\x\left(x^2-\dfrac{1}{4}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{4}=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
c/ Với mọi x ta có :
\(\left|x-5\right|=\left|5-x\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|5-x\right|\ge\left|\left(x+3\right)+\left(5-x\right)\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|5-x\right|\ge\left|8\right|\)
\(\Leftrightarrow\left|x+3\right|+\left|5-x\right|\ge8\)
Dấu "=" xảy ra khi :
\(\left(x+3\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\5\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3\le x\le5\\x\in\varnothing\end{matrix}\right.\)
Vậy ...