a,\(\text{Để }\left(4x+3\right)^3-\left(2x-5\right)^3=\left(2x+8\right)^3\) thì
\(3\left(4x+3\right)\left(2x-5\right)\left(2x+8\right)=0\)
\(\Leftrightarrow\left(4x+3\right)\left(2x-5\right)\left(2x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\2x-5=0\\2x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{5}{2}\\x=-4\end{matrix}\right.\)
Vậy..
b,\(Để\left(3x+2016\right)^3+\left(3x-2019\right)^3=\left(6x-3\right)^3\) thì
\(3\left(3x+2016\right)\left(3x-2019\right)\left(6x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2016=0\\3x-2019=0\\6x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2016}{3}\\x=\dfrac{2019}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy...