| 3 - 2x| -3 = -(-3)
=> |3 - 2x | = 3+3
=> |3-2x | = 6
=> \(\left[{}\begin{matrix}3-2x=6\\3-2x=-6\end{matrix}\right.\)
Sau đó tính ra từng trường hợp một nhé !
/ 3 - 2x / - 3 = - (-3)
/ 3 - 2x / -3 = 3
/ 3 - 2x / = 3 +3
/ 3 - 2x / = 6
Th1:
3- 2x = 6
2x = 3-6
2x = -3
x= (-3) :2
x= \(-\dfrac{3}{2}\)
Th2:
3 - 2x = -6
2x = 3 - (-6)
2x = 9
x = 9 : 2
x = \(\dfrac{9}{2}\)
Chúc bn hok tốt!
\(\left|3-2x\right|\) - 3 = -(-3)
⇒ \(\left|3-2x\right|\) = -(-3) + 3
⇒ \(\left|3-2x\right|\) = 9
⇒ 3 - 2x = 9 hoặc 3 - 2x = -9
Nếu 3 - 2x = 9 ⇒ 2x = -6 ⇒ x = -3
Nếu 3 -2x = -9 ⇒ 2x = 12 ⇒ x = 6
Vậy x = -3 hoặc x = 6
\(\left|3-2x\right|-3=-\left(-3\right)\)
\(\Leftrightarrow\left|3-2x\right|-3=3\)
\(\Leftrightarrow\left|3-2x\right|=3+3\)
\(\Leftrightarrow\left|3-2x\right|=6\)
\(\Leftrightarrow3-2x=\pm6\)
\(\Leftrightarrow\left[{}\begin{matrix}3-2x=6\\3-2x=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3-6\\2x=3-\left(-6\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-3\\2x=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
Vậy \(x=-\dfrac{3}{2}\) ; \(x=\dfrac{9}{2}\)
