Cho phương trình: 3\(\sqrt{x^2-2x+3}\) =x2-2x+m với tham số m∈R.Tìm tất cả các giá trị của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc đoạn 0,3
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
Cho hai phương trình \(\sqrt{x-6}\)+ x3-6x2+x-6=0(1) và \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}\)=\(\sqrt{x-2}\)(2) (m là tham số). Số các giá trị của tham số m để phương trình (2) là phương trình hệ quả của phương trình (1).
A.0 B.1 C.2 D.3
Tìm các giá trị của tham số m để phương trình sau có nghiệm thực: \(m\left(x+4\right)\sqrt{x^2+2}=5x^2+8x+24\)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
Tìm tập hợp tất cả các giá trị của tham số m để phương trình \(\sqrt{1+x}+\sqrt{1-x}+4\sqrt{1-x^2}=m\) có nghiệm
có tất cả bao nhiêu giá trị nguyên của tham số m (biết \(m\ge-2019\))
để Hệ phương trình sau \(\hept{\begin{cases}x^2+x-\sqrt[3]{y}=1-2m\\2x^3-x^2\sqrt[3]{y}-2x^2+x\sqrt[3]{y}=m\end{cases}}\)
có nghiệm thực?
Có bao nhiêu giá trị m nguyên để phương trình \(\sqrt{x+2}+\sqrt{2-x}+2\sqrt{-x^2+4}+2m+3=0\) có nghiệm