Tất cả các giá trị của tham số m để phương trình \(mx^4-2\left(m-1\right)x^2+\left(m-1\right)m=0\) có một nghiệm là
Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)
Cho hai phương trình \(\sqrt{x-6}\)+ x3-6x2+x-6=0(1) và \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}\)=\(\sqrt{x-2}\)(2) (m là tham số). Số các giá trị của tham số m để phương trình (2) là phương trình hệ quả của phương trình (1).
A.0 B.1 C.2 D.3
Biết rằng tập hợp các giá trị của tham số m để phương trình : \({x^2} - 2x - \sqrt {x + m} = m\) có nghiệm duy nhất là \(\left\{ {\left. { - \frac{a}{b}} \right\} \cup ( - c;d)} \right.\), với a,b,c,d là các số tự nhiên và \(\frac{a}{b}\) là phân số tối giản. Giá trị biểu thức \(\begin{array}{l} S = a + 2b + 3c + 4d\\ \end{array}\) là ?
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
Cho phương trình : \(x^4-2\left(m+1\right)x^2+m^2+m+2=0\) tìm tất cả các giá trị của m để phương trình có bốn nghiệm phân biệt lớn hơn -1
có bao nhiêu giá trị nguyên của tham số m trên đoạn \([-2020;2020]\) để phương trình \(\left|\sqrt{4x^2-12x+10}-\sqrt{4x^2+20x+74}\right|=m\) có nghiệm
Có bao nhiêu tham số nguyên m để phương trình: \(\left(\sqrt{x+2}-\sqrt{10-x}\right)\left(x^2-10x-11\right)\left(\sqrt{3x+3-m}\right)=0\)
có đúng 2 nghiệm phân biệt
Tìm m để phương trình có nghiệm :
\(\left(\sqrt{x-1}-m\right).\left(\sqrt{x}+m\right)+m^2=2\sqrt[4]{x\left(x-1\right)}+1\)