Đặt \(T=\left|\sqrt{4x^2-12x+10}-\sqrt{4x^2+20x+74}\right|\)
\(T=\left|\sqrt{\left(2x-3\right)^2+1}-\sqrt{\left(2x+5\right)^2+7^2}\right|\)
Trong hệ tọa độ Oxy, xét \(M\left(2x;0\right);A\left(3;1\right);B\left(-5;7\right)\)
Ta có: \(\left\{{}\begin{matrix}AM=\sqrt{\left(2x-3\right)^2+1}\\BM=\sqrt{\left(2x+5\right)^2+7^2}\end{matrix}\right.\) ; \(AB=\sqrt{8^2+6^2}=10\)
\(\Rightarrow T=\left|AM-BM\right|\le AB=10\)
\(\Rightarrow0\le T\le10\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(0\le m\le10\)
Có 11 giá trị nguyên của m thỏa mãn