1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
Tìm tất cả các số nguyen dương x;y;p (p nguyên tố) sao cho \(x^2+p^2y^2=6\left(x+2p\right)\)
Tìm tất cả các số nguyên dương x;y;p(p là số nguyên tố) thỏa: \(x^2+p^2y^2=6\left(x+2p\right)\)
Tìm các số nguyên dương x,y thoả mãn \(x^3-y^3=133\left(x^2+y^2\right)\)
Các bạn giải hết cho mình với nhé, mình cảm ơn nhiều<3
tìm các bộ số nguyên dương (x,y,p) với p là số nguyên tố thỏa mãn
\(x^2+p^2y^2=6\left(x+2p\right)\)
Tìm tất cả các số nguyên tố \(\left(x;y\right)\) sao cho \(\left(x^2-y^2\right)^2=4xy+1\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
1Cho x,y,z >0 và xy+yz+zx=1. Chứng minh rằng \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2^x\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\) 2 Cho p,q là hai số nguyên tố thoả mãn \(p-1⋮p\) và \(p^3-1p⋮\) Chứng minh rằng p+q là số chính phương