Tìm tất cả các số nguyên dương x;y;p(p là số nguyên tố) thỏa: \(x^2+p^2y^2=6\left(x+2p\right)\)
Tìm tất cả các bộ số nguyên dương
(x;y;p) với p là số nguyên tố thoả mãn \(x^2+p^2y^2=6\left(x+2p\right)\)
Tìm tất cả các số nguyên tố \(\left(x;y\right)\) sao cho \(\left(x^2-y^2\right)^2=4xy+1\)
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
tìm các bộ số nguyên dương (x,y,p) với p là số nguyên tố thỏa mãn
\(x^2+p^2y^2=6\left(x+2p\right)\)
1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50
1.Giải hpt: \(\left\{{}\begin{matrix}17x+2y=2011\left|xy\right|\\x-2y=3xy\end{matrix}\right.\)
2. Tìm tất cả gt của x, y, z sao cho: \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)