a) \(3^x.3=243\)
\(\Rightarrow3^{x+1}=3^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
b) \(2^x.7=56\)
\(2^x=56:7\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
\(3^x.3=243\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
\(2^x.7=56\)
\(\Rightarrow2^x=56:7\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
\(a,\) \(3^x.3=243\)
\(\Rightarrow3^x.3=3^5\)
\(\Rightarrow3^x=3^5:3\)
\(\Rightarrow3^x=3^{5-1}\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
\(b,\) \(2^x.7=56\)
\(\Rightarrow2^x=56:7\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
a) \(3^x.3=243\Leftrightarrow3^{x+1}=3^5\Rightarrow x+1=5\Leftrightarrow x=4\)
b) \(2^x.7=56\Leftrightarrow2^x=8\Leftrightarrow2^x=2^3\Leftrightarrow x=3\)
\(\Rightarrow3^x=\frac{243}{3}\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=\left(3\right)^4\)
\(\Rightarrow x=4\)
\(\Rightarrow2^x=\frac{56}{7}\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
3x . 3 = 243
3x = 243 : 3
3x = 81
3x = 34
x = 4
2x . 7 = 56
2x = 56 : 7
2x = 8
2x = 23
x = 3
a)3x.3=243
=>3x=243:3
=>3x=81
=>3x=34
=>x=4
b)2x.7=56
=>2x=56:7
=>2x=8
=>2x=23
=>x=3